If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x-375=0
a = 2; b = -10; c = -375;
Δ = b2-4ac
Δ = -102-4·2·(-375)
Δ = 3100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3100}=\sqrt{100*31}=\sqrt{100}*\sqrt{31}=10\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{31}}{2*2}=\frac{10-10\sqrt{31}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{31}}{2*2}=\frac{10+10\sqrt{31}}{4} $
| 32-y/y=3/5 | | 2x^2+7x-2=11 | | (x-2)^3=0 | | -6n+2=-5n-19 | | F(1)=8n-3 | | 4x^2-5=29 | | 5/3+1/4t=5 | | -4(t-3)+8t=9t-1 | | -13-(-1)=x/12 | | 8−(3x+3)=x−(2x+1) | | x^2−6x+5=0 | | 3y^2+18y+21=0 | | 9(-p-4)=18 | | 4(2c-1)-6=4c+6 | | 14/5+1/2t=4 | | G(-4)=3n-10 | | 3y^2+6y+21=0 | | 4-a=a+16 | | 2x-(7x-3)=8-(x+9) | | x^2-19x+13=0 | | 4x-5×(x-1)=-2x+4 | | 12/14=18/x | | -4y-13=2y+17 | | -6=-3/8v | | 2(5^(2x-3))-4=7 | | 4n^2+31=-8n | | x3+7x^2-36=0 | | 5x-6=11x-48 | | 5^(2x-3)=(11/2) | | 7x-2x2=0 | | 5^(2x-3)=6 | | 2/3x108-3/4=9/12x108 |